НЕКОТОРЫЕ АСПЕКТЫ ПЕЧАТИ НА СТРОИТЕЛЬНЫХ 3D ПРИНТЕРАХ СЕРИИ S

Применение принтеров 3D— печати в строительстве в настоящее время ограничено радом причин. Среди них масса технических проблем, но основная — отсутствие нормативной и законодательной базы для такого рода строительства.

Именно отсутствие нормативов мешают взять на вооружение 3D оборудование крупным строительным компаниям, рассматривающим концепцию строительной печати именно для многоэтажного и массового строительства. Нерешённые проблемы применения строительной 3D печати сводят на нет возможность применения её в поточной застройке.

Однако вполне реальным на этом фоне выглядит возможность малоэтажного индивидуального строительства, строительства летних домов, гаражей, всевозможных беседок, ландшафтных построек, прудов, детских городков, бассейнов. Понятно, что всё это удел средних и малых предпринимателей, имеющих возможность быстро и гибко работать с потенциальным , но ещё пока, увы, не массовым заказчиком.

Отсутствие на рынке оборудования для строительной 3D печати объясняется прежде всего сравнительно высокой стоимостью его для этого сегмента предпринимателей.

Кроме того даже небольшой принтер формата 4 х 6 метров, предназначенный для печати элементов зданий, предметов ландшафтного дизайна высотой до 3 метров – уже довольно внушительная конструкция, требующая ещё и достаточно большого помещения. Кроме места для установки самого 3D – принтера требуется предусмотреть участок подготовки бетонной смеси и её подачи в печатающую головку, участок предварительной сушки, складские помещения и участок погрузки.

Кстати говоря, применение принтеров для печати не целиковых зданий, а их составляющих в условиях производства позволяет исключить сезонность строительства, т.е. печатать отдельные части зданий, выдерживая их в складских помещениях до набора прочности бетона и только затем собирая их в целое здание на строительной площадке.

Строительный 3D – принтер S – 6043 позволяет печатать элементы зданий размером до 5 х 3,2 метра, высотой до 2,8 метра составами на основе цемента с добавлением фиброволокна и коалиновыми смесями при температуре окружающего воздуха в помещении от +5 до + 30 градусов по Цельсию.

Применение коалиновых смесей для печати печей, каминов, мангалов, барбекюшниц и прочих огнеупорных изделий специфично и узкопрофильно, кроме этого процесс требует наличие печей для предварительного обжига. Однако сам процесс печати ничем не отличается от печати например предметов садового интерьера цементными составами.

Более широкое применение может найти цементная смесь с фиброволокном. Что такое цемент и инертные наполнители знают не только профессиональные строители. Что такое фиброволокно для бетона – поясним : это волокна из базальта, стали или полипропилена. Добавление фибры в бетон позволяет достичь сразу нескольких целей:

– армирование бетона, вплоть до полной замены армокаркаса на фиброволокно, обеспечивая тем самым жёсткость и прочность конструкции, уменьшая её вес и снижая расходы на создание армокаркаса;

– увеличение устойчивости изделий к изгибу при длительном воздействии высоких температур. При нагреве бетона вплоть до 1100°С фиброволокна повышают устойчивость бетонных элементов к раскалыванию;

– повышение пластичности цементных растворов, что особенно важно для равномерной подачи смеси через печатающую головку строительного принтера;

– уменьшение удельного веса смеси, позволяющее нанесение большего количества слоёв при печати;

– повышение износостойкости бетонных изделий, при полном застывании бетона вплоть до 30%.

– защищенность от внешнего воздействия влаги и агрессивных веществ. Капилляры, образующиеся в процессе дегидрации бетона заполняются фиброволокном, не позволяющим проникать в бетон влаге из вне.

Несомненно к самым важным свойствам фиброволокна для процесса строительной печати являются его лёгкость и увеличение пластических свойств цементной смеси.

Применение фиброволокон при печати на строительном 3D – принтере S – 6043 быстротвердеющими цементными составами позволяет получить толщину укладываемого слоя до10 мм при ширине до 30 мм. При этом подвижность смеси в печатающей головке сохраняется в течении часа. Малое время сохранения подвижности смеси позволяет печатать элементы сравнительно большой высоты без промежуточного подсушивания. Однако, лабораторные испытания контрольных образцов показали, что прочность таких составов относительно не велика: при сжатии в возрасте 28 суток 1,6 МПа, а прочность на растяжение при изгибе чуть менее 1 МПа. Кроме этого, быстротвердеющие смеси не годятся для изделий, эксплуатируемых вне помещений.

Больший интерес представляют высокопрочные смеси с модифицирующими и минеральными добавками позволяющими получить высокопрочные водостойкие и трещиностойкие изделия. Применение таких составов для печати элементов зданий обеспечивает достаточную несущую способность, морозостойкость и сопротивление паропроницаемости. Лабораторные испытания напечатанных контрольных образцов из высокопрочных смесей показали, что прочность при сжатии в возрасте 28 суток достигает 10 МПа, а прочность на растяжение при изгибе 3,5 МПа. При этом морозостойкость обеспечивается на уровне 35-40 циклов. Гидроскопичность изделий лежит в пределах 10%.

Подвижность высокопрочных смесей применяемых для 3D – печати сохраняется сравнительно долго – до 2-4 часов. Это качество является недостатком для печати высоких элементов. Для достижения несущей способности слоёв приходится периодически подсушивать изделие, что увеличивает время печати.

Отдельно стоит поговорить о армировании печатаемых изделий. Совершенно понятно, что применение металлической арматуры в привычном понимании при печати на строительном 3D – принтере вызывает трудности; вручную требует опять же, извините за тавтологию, ручного труда, автоматизировано – сложных и дорогостоящих роботов. Частично эта проблема решается применением вышеописанного фиброволокна, частично путём привычного армирования в технологические пустоты стен при сборке зданий с последующей заливкой бетоном. Не исключается возможность горизонтального армирования – укладки арматуры или плоских армокаркасов между слоями изделий в процессе печати.

Применение строительных 3D – принтеров S – 4040 и S – 6043 для печати целых зданий на открытых строительных площадках непосредственно на фундамент возможно, но ограничено размерами рабочей зоны. Однако, учитывая возможную стеснённость строительной площадки, это может являться преимуществом. Переставляется принтер S – 6043 в течении 1-2 часов.

Для печати зданий целиком больше подходит принтер S – 1160 с рабочим полем 10 х 7 метров. Принтер позволяет печатать здания и сооружения высотой до 5,5 метров. Соответственно при одной разовой перестановке принтера можно напечатать дом площадью более 120 метров в одном этаже.

Применение 3D печати в строительстве

Оборудование для 3D печати изменило представление о прототипировании и серийном производстве. Аддитивные технологии нашли своё применение в автомобилестроении, авиационной промышленности, изготовлении бытовой техники, одежды и даже выращивании искусственных органов. Сфера строительства не стала исключением – 3D принтеры успешно применяются в процессе возведения малоэтажных зданий.

Индустрия развивалась скачкообразно. Ни фотополимеризация, ни лазерное спекание, ни электронно-лучевая плавка не смогли доказать свою эффективность в области строительства. Но в 2014 году случился прорыв – частные компании, базирующиеся в США и Китае, почти одновременно начали работу над созданием оборудования, объединяющего в себе преимущества экструзии и метода многоструйного моделирования – так появились 3D принтеры для печати бетоном.

Первые образцы использовались для создания малогабаритных архитектурных форм. Современная техника строит жилые дома. Говорить о печати перекрытий в воздухе пока не приходится, а этажность зданий зависит от габаритов машины, – тем не менее, построить жилой дом с межкомнатными перегородками, дверными и оконными проемами, разводкой под прокладку инженерных коммуникаций можно за 24 часа!

Конструкция 3D принтера для строительных работ

Производители не придерживаются единой концепции в процессе сборки устройства для печати строительных элементов: оно может быть мобильным или стационарным, напоминать кран на гусеничном ходу, систему балок и шарниров, брандспойт с сервоприводами. Действительно важно лишь то, на какую высоту, и по какой траектории устройство способно укладывать строительный материал.

Передовые модели комплектуются дополнительной стрелой для обеспечения ускоренной подачи материала и электроподъемниками, чтобы печатать на готовом фундаменте. Толщина нанесения печатной смеси, конфигурация здания, создание многокамерных стен, автоматическое смешивание ингредиентов и подача в экструдер – все детали печати вносятся с помощью специального ПО, а подготовка занимает не дольше 30 минут.

Материалы для 3D строительства

Для возведения прочных, износоустойчивых несущих конструкций используются бетонные смеси с добавками. Наиболее востребованы на рынке следующие «чернила»:

  • чистый бетон;

  • пескобетон;

  • водостойкий гипс – для облицовочных работ;

  • смесь со стеклянным волокном – для печати объемных элементов;

  • с геополимерами из промышленных отходов – для хрупких конструкций;

  • смесь с фиброволоконом – для создания частей продолговатой формы;

  • противоморозная смесь – для работы при отрицательных температурах;

  • с пластификатором – для воссоздания ровной поверхности;

  • с добавлением диатомитовых шариков – для шероховатости;

  • модифицированный гипс – для декоративной печати.

Технология строительства с применением трехмерной печати

Бетон наносится слоями. Чтобы прочность конструкции соответствовала проектным задачам, используется вертикальное и горизонтальное армирование. Горизонтальный армопояс устанавливается между слоями, вертикальный – после затвердевания состава. Арматура фиксируется и заливается бетоном. Существуют принтеры, которые вначале распыляют полеуретан, формируя «камеру», а затем заливают бетон внутрь.

Большинство моделей предназначено для эксплуатации в закрытом помещении. У цехового оборудования есть весомый недостаток – напечатанные элементы надо транспортировать на стройплощадку. Мобильные устройства могут использоваться прямо на строительном участке для печати по фундаменту. Чтобы сохранить характеристики состава сооружается защитный колпак над объектом, в смесь добавляются присадки. Расходы материалов снижаются на 30-70% в сравнении с классической технологией.

Примеры современных 3D «билдеров»

Пионер отрасли – китайская компания WinSun Decoration Design Engineering. Её детище – стационарное устройство длинной 150 метров. Принтер WinSun работает с объектами высотой до шести метров. Для приготовления строительной смеси используются сталь, стекло, бетон, строительный мусор и цемент.

В сравнении с традиционными методами строительства, китайское устройство возводит аналогичное по габаритам и планировке здание на 50% быстрее. Основные статьи экономии: трудозатраты (до 80%) и расход материалов (до 60%). Примеры работы:

В США ведущие позиции занимает Apis Corp. – использует аппарат для аддитивной печати. В отличие от предшественника, выглядит как компактный кран, который выстраивает здание вокруг себя.

Печатает смесью на основе бетона. После завершения работ устройство разбирается либо извлекается с помощью грузоподъемного оборудования.

Как используются машины для печати бетоном

В ОАЭ строится город, предназначенный для тренировки космонавтов в условиях, приближенных к реальности. Перед тем, как будущие колонизаторы отправятся осваивать Марс, им предстоит построить колонию на Земле. Проект называется Mars Science City. Стены хозяйственных построек возведут из песка с помощью 3D принтера.

Тем временем, NASA совместно с армией США и компанией Caterpillar работают над технологией быстрого возведения экспедиционных конструкций из подготовленной смеси и случайных подручных материалов для строительства казарм, баррикад, барьеров, мостов, заградительных препятствий, барьеров.

В Амстердаме (Нидерланды) установили первый в мире железобетонный мост, сделанный с помощью объемной печати. Мост длиной 8 метров состоит из 800 слоев армированного бетона, способен выдержать вес 40 большегрузов.

Аналогичный проект воплотили в жизнь в Испании. Мост сделан из железобетона. Длина конструкции – 12 метров. Инженеры работали над проектом 15 лет.

В Голландии также напечатали оригинальные зоны отдыха для обустройства общественного пространства. Проект получил название Urban Cabin. «Кабины» сделаны из биопластика.

Apis Corp. напечатали жилой дом за 24 часа. Площадь жилья – 38 метров2. Стоимость строительных работ составила чуть больше десяти тысяч долларов.

HuaShang Tengda за 45 дней напечатали особняк, площадью 400 квадратных метров. На производство несущих конструкций было затрачено 20 тонн бетона C30, из которого сделали несъемную опалубку толщиной 250 мм. Сейсмические испытания доказали, что здание способно выдержать землетрясение силой восемь баллов по шкале Рихтера.

Меню
Заказать звонок
+
Жду звонка!